354 research outputs found

    Quantum dots for multimodal molecular imaging of angiogenesis

    Get PDF
    Quantum dots exhibit unique optical properties for bioimaging purposes. We have previously developed quantum dots with a paramagnetic and functionalized coating and have shown their potential for molecular imaging purposes. In the current mini-review we summarize the synthesis procedure, the in vitro testing and, importantly, the in vivo application for multimodal molecular imaging of tumor angiogenesis

    Quantum Dots for Tracking Dendritic Cells and Priming an Immune Response In Vitro and In Vivo

    Get PDF
    Dendritic cells (DCs) play a key role in initiating adaptive immune response by presenting antigen to T cells in lymphoid organs. Here, we investigate the potential of quantum dots (QDs) as fluorescent nanoparticles for in vitro and in vivo imaging of DCs, and as a particle-based antigen-delivery system to enhance DC-mediated immune responses. We used confocal, two-photon, and electron microscopies to visualize QD uptake into DCs and compared CD69 expression, T cell proliferation, and IFN-γ production by DO11.10 and OT-II T cells in vivo in response to free antigen or antigen-conjugated to QDs. CD11c+ DCs avidly and preferentially endocytosed QDs, initially into small vesicles near the plasma membrane by an actin-dependent mechanism. Within 10 min DCs contained vesicles of varying size, motion, and brightness distributed throughout the cytoplasm. At later times, endocytosed QDs were compartmentalized inside lysosomes. LPS-induced maturation of DCs reduced the rate of endocytosis and the proportion of cells taking up QDs. Following subcutaneous injection of QDs in an adjuvant depot, DCs that had endocytosed QDs were visualized up to 400 µm deep within draining lymph nodes. When antigen-conjugated QDs were used, T cells formed stable clusters in contact with DCs. Antigen-conjugated QDs induced CD69 expression, T cell proliferation, and IFN-γ production in vivo with greater efficiency than equivalent amounts of free antigen. These results establish QDs as a versatile platform for immunoimaging of dendritic cells and as an efficient nanoparticle-based antigen delivery system for priming an immune response

    Detection of Pathogenic Mycobacteria Based on Functionalized Quantum Dots Coupled with Immunomagnetic Separation

    Get PDF
    Mycobacteria have always proven difficult to identify due to their low growth rate and fastidious nature. Therefore molecular biology and more recently nanotechnology, have been exploited from early on for the detection of these pathogens. Here we present the first stage of development of an assay incorporating cadmium selenide quantum dots (QDs) for the detection of mycobacterial surface antigens. The principle of the assay is the separation of bacterial cells using magnetic beads coupled with genus-specific polyclonal antibodies and monoclonal antibodies for heparin-binding hemagglutinin. These complexes are then tagged with anti-mouse biotinylated antibody and finally streptavidin-conjugated QDs which leads to the detection of a fluorescent signal. For the evaluation of performance, the method under study was applied on Mycobacterium bovis BCG and Mycobacterium tuberculosis (positive controls), as well as E. coli and Salmonella spp. that constituted the negative controls. The direct observation of the latter category of samples did not reveal fluorescence as opposed to the mycobacteria mentioned above. The minimum detection limit of the assay was defined to 104 bacteria/ml, which could be further decreased by a 1 log when fluorescence was measured with a spectrofluorometer. The method described here can be easily adjusted for any other protein target of either the pathogen or the host, and once fully developed it will be directly applicable on clinical samples

    Osseous erosion by herniated nucleus pulposus mimicking intraspinal tumor: a case report

    Get PDF
    Erosion of spinal osseous structure, so-called scalloping, has been rarely reported associated with herniated nucleus pulposus (HNP). We report a rare case of HNP causing erosion of the spinal osseous structure (including lamina). The patient was an 81-year-old woman with 3-year history of low-back pain and left leg radiating pain. Muscle weakness of the left leg was also apparent. Computed tomography following myelography showed severe compression of the dural sac at the level of L3–L4; furthermore, erosion of the lamina, pedicle, and vertebral body was noted, indicating that the space-occupying mass was most probably a tumorous lesion. The mass also showed calcification inside. During the surgery, the mass was confirmed to be an HNP with calcification. Following resection, the pain disappeared. Surgeons should be aware of the possibility of scalloping of the vertebrae caused by HNP mimicking a tumorous lesion

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Murine Leukemia Virus Spreading in Mice Impaired in the Biogenesis of Secretory Lysosomes and Ca2+-Regulated Exocytosis

    Get PDF
    Retroviruses have been observed to bud intracellularly into multivesicular bodies (MVB), in addition to the plasma membrane. Release from MVB is thought to occur by Ca(2+)-regulated fusion with the plasma membrane.To address the role of the MVB pathway in replication of the murine leukemia virus (MLV) we took advantage of mouse models for the Hermansky-Pudlak syndrome (HPS) and Griscelli syndrome. In humans, these disorders are characterized by hypopigmentation and immunological alterations that are caused by defects in the biogenesis and trafficking of MVBs and other lysosome related organelles. Neonatal mice for these disease models lacking functional AP-3, Rab27A and BLOC factors were infected with Moloney MLV and the spread of virus into bone marrow, spleen and thymus was monitored. We found a moderate reduction in MLV infection levels in most mutant mice, which differed by less than two-fold compared to wild-type mice. In vitro, MLV release form bone-marrow derived macrophages was slightly enhanced. Finally, we found no evidence for a Ca(2+)-regulated release pathway in vitro. Furthermore, MLV replication was only moderately affected in mice lacking Synaptotagmin VII, a Ca(2+)-sensor regulating lysosome fusion with the plasma membrane.Given that MLV spreading in mice depends on multiple rounds of replication even moderate reduction of virus release at the cellular level would accumulate and lead to a significant effect over time. Thus our in vivo and in vitro data collectively argue against an essential role for a MVB- and secretory lysosome-mediated pathway in the egress of MLV

    Tracking the Small with the Smallest – Using Nanotechnology in Tracking Zooplankton

    Get PDF
    A major problem when studying behavior and migration of small organisms is that many of the questions addressed for larger animals are not possible to formulate due to constraints on tracking smaller animals. In aquatic ecosystems, this problem is particularly problematic for zoo- and phytoplankton, since tracking devices are too heavy to allow the organism to act naturally. However, recent advances in nanotechnology have made it possible to track individual animals and thereby to focus on important and urgent questions which previously have not been possible to address. Here we report on a novel approach to track movement and migratory behavior of millimeter sized aquatic animals, particularly Daphnia magna, using the commercially available nanometer sized fluorescent probes known as quantum dots. Experimental trials with and without quantum dots showed that they did not affect behavior, reproduction or mortality of the tested animals. Compared to previously used methods to label small animals, the nano-labeling method presented here offers considerable improvements including: 24 h fluorescence, studies in both light and darkness, much improved optical properties, potential to study large volumes and even track animals in semi-natural conditions. Hence, the suggested method, developed in close cooperation between biologists, chemists and physicists, offers new opportunities to routinely study zooplankton responses to light, food and predation, opening up advancements within research areas such as diel vertical/horizontal migration, partial migration and other differences in intra- and interspecific movements and migration

    Quantum dot loaded immunomicelles for tumor imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optical imaging is a promising method for the detection of tumors in animals, with speed and minimal invasiveness. We have previously developed a lipid coated quantum dot system that doubles the fluorescence of PEG-grafted quantum dots at half the dose. Here, we describe a tumor-targeted near infrared imaging agent composed of cancer-specific monoclonal anti-nucleosome antibody 2C5, coupled to quantum dot (QD)-containing polymeric micelles, prepared from a polyethylene glycol/phosphatidylethanolamine (PEG-PE) conjugate. Its production is simple and involves no special equipment. Its imaging potential is great since the fluorescence intensity in the tumor is twofold that of non-targeted QD-loaded PEG-PE micelles at one hour after injection.</p> <p>Methods</p> <p>Para-nitrophenol-containing (5%) PEG-PE quantum dot micelles were produced by the thin layer method. Following hydration, 2C5 antibody was attached to the PEG-PE micelles and the QD-micelles were purified using dialysis. 4T1 breast tumors were inoculated subcutaneously in the flank of the animals. A lung pseudometastatic B16F10 melanoma model was developed using tail vein injection. The contrast agents were injected via the tail vein and mice were depilated, anesthetized and imaged on a Kodak Image Station. Images were taken at one, two, and four hours and analyzed using a methodology that produces normalized signal-to-noise data. This allowed for the comparison between different subjects and time points. For the pseudometastatic model, lungs were removed and imaged <it>ex vivo </it>at one and twenty four hours.</p> <p>Results</p> <p>The contrast agent signal intensity at the tumor was double that of the passively targeted QD-micelles with equally fast and sharply contrasted images. With the side views of the animals only tumor is visible, while in the dorsal view internal organs including liver and kidney are visible. <it>Ex vivo </it>results demonstrated that the agent detects melanoma nodes in a lung pseudometastatic model after a 24 hours wash-out period, while at one hour, only a uniform signal is detected.</p> <p>Conclusions</p> <p>The targeted agent produces ultrabright tumor images and double the fluorescence intensity, as rapidly and at the same low dose as the passively targeted agents. It represents a development that may potentially serve to enhance early detection for metastases.</p
    corecore